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Abstract Available on the Internet the CORAL software gives reasonable good pre-
diction for standard enthalpy of formation for selected organometallic compounds
(n = 132). The approach is tested using five random splits of the considered data into
the sub-training set (n = 32–49), calibration set (n = 36–51), test set (n = 10–29), and
the validation set (n = 22–41). Compounds of the validation set are not involved in
building up the models. The average statistical quality of prediction is the follow-
ing: correlation coefficient (R2) 0.991 ± 0.005 and standard error of estimation (s)
22.9 ± 5.6 kJ/mol.
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1 Introduction

The standard enthalpy of formation, �f H0, represents a basic property of any chem-
ical compound. It provides information about compound’s thermodynamic stability
and facilitates the calculation of enthalpies of reaction [1]. Quantitative structure–
property/activity relationships (QSPRs/QSARs) are a tool to estimate the standard
enthalpy for substances which were not studied in the experiment [2–5]. Optimal
descriptors calculated by the Monte Carlo method with the representation of the
molecular structure by simplified molecular input-line entry system (SMILES) [6]
and SMiles ARbitrary Target Specification (SMART) [7] also were used as a tool for
QSPR prediction of standard enthalpy of organometallic compounds. The CORAL
software [8] involves building up of optimal descriptors by the Monte Carlo method.
The validation of a model becomes crucial component of the QSPR/QSAR analyses
[9]. The aim of the present study is the estimation of statistical quality of QSPRs for
the standard enthalpy of formation from elements of organometallic compounds. It is
accomplished for few series of random splits of available data into the training set, the
calibration set, the test set, and the validation set.

2 Method

2.1 Data

The values of the gas-phase enthalpies of formation (in kJ/mol) of the organometallic
compounds (n = 132) have been taken from the literature [1]. Using five different
schemes these compounds were split into the sub-training set, the calibration set, the
test set, and the validation set. The details of these splits were selected and executed
according to three principles: (i) the majority of molecular features (i.e. SMILES
attributes) should be placed in the sub-training set and in the calibration set; (ii) the
test set (as well as the validation set) should contain the minimum of rare attributes;
and (iii) splits should not be identical. The measure of identity for a pair of splits can
be estimated by the formula:

I denti t yi, j = Nseti, j

0.5 × (Nseti + Nset j )
× 100 % (1)

where set = (sub-training, calibration, test, and validation); Nseti, j is the number of
identical substances in the set for ith and jth splits; Nseti and Nset j are the total
numbers of substances in the set for ith and jth splits, respectively.

Table 1 contains data on the identity of five splits into the sub-training, calibration,
test, and validation sets.

2.2 Optimal descriptors

The SMILES-based optimal descriptors are calculated as the following:

DCW (T hreshold, Nepoch) =
∑

CW (S Ak) (2)
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Table 1 The values of identity (%) for all pairs of five splits into sub-training, calibration, test, and validation
sets

Set 1 2 3 4 5

1 Sub-training 100 26 26 27 26

Calibration 100 37 35 41 35

Test 100 20 27 11 30

Validation 100 17 25 9 33

2 Sub-training 100 33 42 40

Calibration 100 23 30 29

Test 100 12 24 12

Validation 100 8 13 9

3 Sub-training 100 22 29

Calibration 100 22 41

Test 100 13 8

Validation 100 8 7

4 Sub-training 100 33

Calibration 100 27

Test 100 21

Validation 100 16

5 Sub-training 100

Calibration 100

Test 100

Validation 100

where S Ak is a SMILES attribute i.e. a group of symbols which cannot be exam-
ined separately, e.g. ‘c’, ‘=’, ‘Cl’, [Si], etc.; CW (S Ak) is correlation weight of S Ak ,
the values of correlation weights are calculated with the Monte Carlo optimization
procedure that provides maximum value of the target function calculated as:

T F = R + R′ − ∣∣R − R′∣∣ × WR − ∣∣C1 − C ′
1

∣∣ × WC − C0 − C ′
0 (3)

R and R′ are correlation coefficient for sub-training and calibration sets, respectively;
C0, C ′

0, C1, and C ′
1 are regression coefficients for sub-training and calibration sets,

respectively; WR = 0.1 and WC = 0.01 are empirical constants;
Threshold is represented by an integer coefficient for classification of SMILES

attributes into two categories rare (noise) and not rare (active). Correlation weights of
rare SMILES attributes are fixed to be equal to zero, i.e. they have not influence on
a model. Threshold values 1 and 2 were examined in this study (if selected threshold
is 1, then attributes which appears in the sub-training at least one times should be
involved in the building up of a model);

Nepoch is the number of iteration of the Monte Carlo optimization, one iteration
represents a variation of all SMILES attributes taken in random sequence [8]. In this
study Nepoch = 200 is used.
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Table 2 List of correlation weights for calculation of DCW(1,200) calculated by the Monte Carlo opti-
mization with target function that is calculated with Eq. 3

SAk CW(SAk ) The number of
SAk in the sub-
training set

The number of
SAk in the cal-
ibration set

The number of
SAk in the test
set

# 4.07900 1 1 0

( −0.08425 33 36 18

1 0.10925 7 11 4

2 0.08350 6 11 4

3 0.02700 4 9 2

4 0.0 0 3 0

= 0.0 0 3 1

B −1.01975 4 6 4

C (sp3) −0.37700 33 37 26

Br −2.83550 3 2 2

I −1.61025 2 2 3

Cl −3.44075 7 4 2

O 0.0 0 0 1

P −0.87400 1 1 0

[Al] −0.16775 2 1 1

[Bi] 5.16150 2 2 0

[As] 0.0 0 1 0

[Ga] 0.32600 3 2 0

[Ge] −0.28650 1 3 2

[Hg] 2.49175 5 4 9

[Pb] 4.07825 2 3 1

[Sb] 2.35850 4 0 1

[Se] 0.32200 2 2 2

[SiH] 0.0 0 1 0

[Si] −1.96150 3 0 0

[Sn] 1.86675 6 15 4

[Te] 1.20625 1 1 5

c (sp2) 0.37175 6 11 4

Table 2 contains example of the correlation weights (split1, Threshold = 1, Nepoch =
200). Table 3 contains an example of calculation of DCW(1,200). When the correlation
weights which provide maximum values for the target function calculated with Eq. 2
are predicted, one can calculate standard enthalpy of formation applying the model:

� f H0 = C0 + C1 × DCW (T hreshold, Nepoch) (4)

Apparently, the predictive ability of the model calculated with Eq. 4 should be
tested using the external set.
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Table 3 Example of calculation
of the
DCW (T hreshold, Nepoch)

with the correlation weights
calculated by the Monte Carlo
method (Table 2) SMILES =
CC(C)C[Al](CC(C)C)CC(C)C
DCW (1,200) = −5.366

(SAk) CW(SAk)

C −0.3770

C −0.3770

( −0.0843

C −0.3770

( −0.0843

C −0.3770

[Al] −0.1677

( −0.0843

C −0.3770

C −0.3770

( −0.0843

C −0.3770

( −0.0843

C −0.3770

( −0.0843

C −0.3770

C −0.3770

( −0.0843

C −0.3770

( −0.0843

C −0.3770

3 Results and discussion

This study has been carried out according to principle: the analysis of series of the
QSPR/QSAR models which are obtained with various splits into the training set (sub-
training and calibration sets) and test set is able to provide more reliable data on the
predictive potential of an approach than the only one model based on the only one
split.

Table 4 contains statistical characteristics of models developed for five random
splits. One can see that statistical quality of these models is similar and quite good.
Preferable threshold for all models is 1. Table 5 contains the statistical quality of
models calculated with Threshold = 1 and the Nepoch = 200. The test set was not
involved in the building up of the models. However, the test set has been involved
in the selection of the optimal threshold value. Consequently, the additional tests of
the approach should be done with the external validation set (Table 5). One can see
(Table 5) that these models calculated with sub-training set and calibration set are
good for both the test set and validation set.

In the case of split1 the model is the following (Fig. 1):

� f H0[k J/mol] = 18.0238(±0.6737) + 50.5631(±0.1306) × DCW (1,200)

(5)

123



J Math Chem (2013) 51:1684–1693 1689

Ta
bl

e
4

T
he

av
er

ag
e

st
at

is
tic

al
qu

al
ity

(t
hr

ee
ru

ns
of

th
e

M
on

te
C

ar
lo

m
et

ho
d

op
tim

iz
at

io
n

w
ith

ta
rg

et
fu

nc
tio

n
th

at
is

ca
lc

ul
at

ed
w

ith
E

q.
3)

of
m

od
el

s
fo

r
en

th
al

py
of

fo
rm

at
io

n
fr

om
el

em
en

ts
of

or
ga

no
m

et
al

lic
co

m
po

un
ds

fo
r

fiv
e

sp
lit

s:
on

e
ca

n
se

e
th

at
th

e
pr

ef
er

ab
le

th
re

sh
ol

d
is

1
fo

r
al

lfi
ve

sp
lit

s

Sp
lit

T
hr

es
ho

ld
N

∗ ac
t

N
∗∗ m

od
el

Su
b-

tr
ai

ni
ng

se
t

C
al

ib
ra

tio
n

se
t

Te
st

se
t

n
R

2
s,

kJ
/m

ol
F

n
R

2
s,

kJ
/m

ol
n

R
2

s,
kJ

/m
ol

1
1

23
10

7
36

0.
99

16
24

.1
4,

03
5

42
0.

98
70

36
.3

29
0.

99
57

22
.5

2
19

36
0.

96
33

50
.5

89
2

42
0.

96
54

61
.5

29
0.

95
40

66
.6

2
1

28
11

0
49

0.
99

41
20

.2
7,

93
2

51
0.

99
41

24
.7

10
0.

99
85

34
.0

2
20

49
0.

98
19

35
.4

2,
54

8
51

0.
98

18
37

.8
10

0.
97

49
58

.7

3
1

26
10

2
42

0.
99

46
22

.4
7,

34
4

37
0.

99
46

23
.1

23
0.

96
80

33
.0

2
22

42
0.

98
02

42
.7

1,
98

5
37

0.
96

06
56

.9
23

0.
86

69
61

.4

4
1

21
91

32
0.

99
33

22
.5

4,
44

8
36

0.
98

10
44

.6
23

0.
98

73
35

.6

2
17

32
0.

95
86

56
.0

69
4

36
0.

95
51

77
.7

23
0.

97
14

76
.8

5
1

24
10

9
40

0.
99

45
23

.3
6,

86
1

45
0.

98
98

26
.7

24
0.

99
12

25
.7

2
19

40
0.

98
32

40
.6

2,
22

3
45

0.
95

10
59

.4
24

0.
92

43
79

.1
∗ )

N
ac

t
is

th
e

nu
m

be
r

of
SM

IL
E

S
at

tr
ib

ut
es

w
hi

ch
ar

e
in

vo
lv

ed
in

a
m

od
el

∗∗
)

N
m

od
el

is
th

e
nu

m
be

r
of

co
m

po
un

ds
w

hi
ch

ar
e

in
vo

lv
ed

in
th

e
bu

ild
in

g
up

of
th

e
m

od
el

(i
.e

.c
om

po
un

ds
pl

ac
ed

in
th

e
su

b-
tr

ai
ni

ng
se

t,
th

e
ca

lib
ra

tio
n

se
t,

an
d

th
e

te
st

se
t,

bu
tn

ot
in

th
e

va
lid

at
io

n
se

t)

123



1690 J Math Chem (2013) 51:1684–1693

Ta
bl

e
5

St
at

is
tic

al
qu

al
ity

of
m

od
el

s
w

ith
ex

te
rn

al
va

lid
at

io
n

Sp
lit

N
ac

t
Su

b-
tr

ai
ni

ng
se

t
C

al
ib

ra
tio

n
se

t
Te

st
se

t
V

al
id

at
io

n
se

t
Pr

ed
ic

tio
n

fo
r

Te
st

se
tto

-
ge

th
er

w
ith

va
lid

at
io

n
se

t

n
R

2
S,

kJ
/m

ol
F

n
R

2
S,

kJ
/m

ol
n

R
2

S,
kJ

/m
ol

n
R

2
S,

kJ
/m

ol
n

R
2

S,
kJ

/m
ol

1
23

36
0.

99
16

24
.1

40
33

42
0.

98
70

36
.3

29
0.

99
58

22
.5

25
0.

99
27

23
.9

54
0.

99
33

23
.0

2
28

49
0.

99
41

20
.1

79
59

51
0.

99
41

24
.7

10
0.

99
86

33
.7

22
0.

99
72

17
.2

32
0.

99
60

22
.8

3
26

42
0.

99
46

22
.4

73
43

37
0.

99
46

23
.0

23
0.

96
82

33
.0

30
0.

99
07

24
.5

53
0.

98
46

28
.1

4
21

32
0.

99
33

22
.5

44
43

36
0.

98
10

44
.4

23
0.

98
73

35
.5

41
0.

98
21

32
.0

64
0.

98
37

33
.0

5
24

40
0.

99
45

23
.2

68
81

45
0.

98
98

26
.6

24
0.

99
13

25
.6

23
0.

99
29

16
.9

47
0.

99
18

21
.4

T
hr

es
ho

ld
is

1.
T

he
nu

m
be

r
of

ep
oc

hs
is

20
0

123



J Math Chem (2013) 51:1684–1693 1691

Fig. 1 The representation of a model that is calculated with Eq. 5

n = 36, R2 = 0.9916, s = 24.1 kJ/mol, F = 4033 (sub-training set);
n = 42, R2 = 0.9870, s = 36.3 kJ/mol (calibration set);
n = 29, R2 = 0.9958, s = 22.5 kJ/mol (test set);
n = 25, R2 = 0.9927, s = 23.9 kJ/mol (validation set);
It is obvious from the data in Table 2 that prevalence of various attributes is different.

One can define three groups of attributes. The first group including: bracket that is
indicator of the branching in the molecular skeleton, carbon in sp3state, and tin [Sn]
has the highest prevalence. The second group (‘1’, ‘2’, and ‘3’ which are indicators
of rings; chlorine; ‘[Hg]’; ‘[Ge]’; and carbon in sp2 state) has middle prevalence. The
third group (all other attributes) has the lowest prevalence. Thus, the molecular features
represented by SMILES attributes of the first and second groups may be qualified as
the basis for the definition of the applicability domain. We suggest that SMILES which
contains more than 90 % of such attributes should be examined as the applicability
domain.

Table 6 contains comparison of models developed for the 132 organometallic com-
pounds taken from the literature. Apparently, the realistic comparison of various
approaches can be done if each approach is tested for a series of the splits. How-
ever, as a rule, such comparison is not available. The statistical quality of models
calculated with the CORAL software for splits: #1, #2, #3, and #5 is better than for
models published in the literature. In the case of split #4, the statistical quality of
the model is poorer, but, in this case, the number of compounds in the test set and
validation set is maximal, and consequently, the minimum number of organometallic
compounds was involved in the building up of this model.

The details of studied five splits are available on the Internet [8]. Having down-
loaded CORALSEA.zip, one can repeat computational experiments described in the
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Table 6 Comparison of statistical quality of the prediction for the enthalpy of formation of organometallic
compounds

The number of
compounds in
the external set

Correlation coeffi-
cient, R2

Standard error
of estimation,
s, kJ/mol

Reference

28 0.990 30.2 [1]

28 0.991 29.4 [6]

28 0.991 29.4 [7]

Validation set 22–41 0.991 ± 0.005 22.9 ± 5.6 In this study

Test set and validation set 32–64 0.990 ± 0.005 25.7 ± 4.3

folder “(7)-Metals-and-Ions”, using #Enthalpy-2012(1).txt, #Enthalpy-2012(2).txt,
…, #Enthalpy-2012(5).txt for the building up a model and then, using files input.txt,
input2.txt, …, input5.txt for the validation of these models [8].

Finally, it should be noted that the CORAL software [8] can be used for the QSAR
analysis of various other endpoints [10–13].

4 Conclusions

The application of CORAL software allows developing reasonable good models for
standard enthalpy of formation from elements for 132 organometallic compounds. The
SMILES attributes which are representation of (a) molecular branching; (b) carbon
in sp3 state; (c) rings; (d) tin, mercury, and germanium have the highest influence for
models of enthalpies of examined organometallic compounds, since they are charac-
terized by maximal prevalence. The statistical quality of models which are calculated
with the CORAL software depends on details of a split of available data into the
training, calibration, test, and validation sets (Table 5).
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